DCIPs/EIPS/eip-2565.md

105 lines
6.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
eip: 2565
title: ModExp Gas Cost
author: Kelly Olson (@ineffectualproperty), Sean Gulley (@sean-sn), Simon Peffers (@simonatsn), Justin Drake (@justindrake), Dankrad Feist (@dankrad)
discussions-to: https://ethereum-magicians.org/t/big-integer-modular-exponentiation-eip-198-gas-cost/4150
status: Final
type: Standards Track
category: Core
created: 2020-03-20
requires: 198
---
## Simple Summary
Defines the gas cost of the `ModExp` (`0x00..05`) precompile.
## Abstract
To accurately reflect the real world operational cost of the `ModExp` precompile, this EIP specifies an algorithm for calculating the gas cost. This algorithm approximates the multiplication complexity cost and multiplies that by an approximation of the iterations required to execute the exponentiation.
## Motivation
Modular exponentiation is a foundational arithmetic operation for many cryptographic functions including signatures, VDFs, SNARKs, accumulators, and more. Unfortunately, the ModExp precompile is currently over-priced, making these operations inefficient and expensive. By reducing the cost of this precompile, these cryptographic functions become more practical, enabling improved security, stronger randomness (VDFs), and more.
## Specification
As of `FORK_BLOCK_NUMBER`, the gas cost of calling the precompile at address `0x0000000000000000000000000000000000000005` will be calculated as follows:
```
def calculate_multiplication_complexity(base_length, modulus_length):
max_length = max(base_length, modulus_length)
words = math.ceil(max_length / 8)
return words**2
def calculate_iteration_count(exponent_length, exponent):
iteration_count = 0
if exponent_length <= 32 and exponent == 0: iteration_count = 0
elif exponent_length <= 32: iteration_count = exponent.bit_length() - 1
elif exponent_length > 32: iteration_count = (8 * (exponent_length - 32)) + ((exponent & (2**256 - 1)).bit_length() - 1)
return max(iteration_count, 1)
def calculate_gas_cost(base_length, modulus_length, exponent_length, exponent):
multiplication_complexity = calculate_multiplication_complexity(base_length, modulus_length)
iteration_count = calculate_iteration_count(exponent_length, exponent)
return max(200, math.floor(multiplication_complexity * iteration_count / 3))
```
## Rationale
After benchmarking the ModExp precompile, we discovered that it is overpriced relative to other precompiles. We also discovered that the current gas pricing formula could be improved to better estimate the computational complexity of various ModExp input variables. The following changes improve the accuracy of the `ModExp` pricing:
### 1. Modify computational complexity formula to better reflect the computational complexity
The complexity function defined in [EIP-198](./eip-198.md) is as follow:
```
def mult_complexity(x):
if x <= 64: return x ** 2
elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
else: return x ** 2 // 16 + 480 * x - 199680
```
where is `x` is `max(length_of_MODULUS, length_of_BASE)`
The complexity formula in [EIP-198](./eip-198.md) was meant to approximate the difficulty of Karatsuba multiplication. However, we found a better approximation for modelling modular exponentiation. In the complexity formula defined in this EIP, `x` is divided by 8 to account for the number of limbs in multiprecision arithmetic. A comparison of the current complexity function and the proposed function against the execution time can be seen below:
![Option 1 Graph](../assets/eip-2565/Complexity_Regression.png)
The complexity function defined here has a better fit vs. the execution time when compared to the [EIP-198](./eip-198.md) complexity function. This better fit is because this complexity formula accounts for the use of binary exponentiation algorithms that are used by bigint libraries for large exponents. You may also notice the regression line of the proposed complexity function bisects the test vector data points. This is because the run time varies depending on if the modulus is even or odd.
### 2. Change the value of GQUADDIVISOR
After changing the 'computational complexity' formula in [EIP-198](./eip-198.md) to the one defined here it is necessary to change `QGUADDIVSOR` to bring the gas costs inline with their runtime. By setting the `QGUADDIVISOR` to `3` the cost of the ModExp precompile will have a higher cost (gas/second) than other precompiles such as ECRecover.
![Option 2 Graph](../assets/eip-2565/GQuad_Change.png)
### 3. Set a minimum gas cost to prevent abuse
This prevents the precompile from underpricing small input values.
## Test Cases
There are no changes to the underlying interface or arithmetic algorithms, so the existing test vectors can be reused. Below is a table with the updated test vectors:
| Test Case | EIP-198 Pricing | EIP-2565 Pricing |
| ------------- | ------------- | ------------- |
| modexp_nagydani_1_square | 204 | 200 |
| modexp_nagydani_1_qube | 204 | 200 |
| modexp_nagydani_1_pow0x10001 | 3276 | 341 |
| modexp_nagydani_2_square | 665 | 200 |
| modexp_nagydani_2_qube | 665 | 200 |
| modexp_nagydani_2_pow0x10001 | 10649 | 1365 |
| modexp_nagydani_3_square | 1894 | 341 |
| modexp_nagydani_3_qube | 1894 | 341 |
| modexp_nagydani_3_pow0x10001 | 30310 | 5461 |
| modexp_nagydani_4_square | 5580 | 1365 |
| modexp_nagydani_4_qube | 5580 | 1365 |
| modexp_nagydani_4_pow0x10001 | 89292 | 21845 |
| modexp_nagydani_5_square | 17868 | 5461 |
| modexp_nagydani_5_qube | 17868 | 5461 |
| modexp_nagydani_5_pow0x10001 | 285900 | 87381 |
## Implementations
[Geth](https://github.com/ethereum/go-ethereum/pull/21607)
[Python](https://gist.github.com/ineffectualproperty/60e34f15c31850c5b60c8cf3a28cd423)
## Security Considerations
The biggest security consideration for this EIP is creating a potential DoS vector by making ModExp operations too inexpensive relative to their computation time.
## References
[EIP-198](./eip-198.md)
## Copyright
Copyright and related rights waived via [CC0](../LICENSE.md).