
Lesson 2
Topics

Solidity Review
Function Selectors
Advanced Solidity Types

Solidity Review
How to define the Solidity version compiler ?

How to define a contract ?

Use the keyword contract followed by your contract name.

How to write variable in Solidity ?

Contract would need some state. We are going to declare a new variable that will
hold our score.

// Any compiler version from the 0.8 release (= 0.8.x)

pragma solidity ^0.8.0;

// Greater than version 0.7.6, less than version 0.8.4

pragma solidity >0.7.6 <0.8.4;

contract Score {

 // You will start writing your code here =)

}

contract Score {

 uint score = 5;

}

Important !

Solidity is a statically typed language. So you always need to declare the variable
type (here uint) before the variable name.

Do not forget to end your declaration statements with a semicolon ;

uint defines an unsigned integer of 256 bits by default.

You can also specify the number of bits, by range of 8 bits. Here are some
examples below:

Type Number range

uint8 0 to 255

uint16 0 to 65,535

uint32 0 to 4,294,967,295

uint64 0 to 18,446,744,073,709,551,615

uint128 0 to 2^128

uint256 0 to 2^256

1) Getter and Setter
We need a way to write and retrieve the value of our score . We achieve this by
creating a getter and setter functions.

In Solidity, you declare a function with the keyword function followed the
function name (here getScore()).

Let’s look at both functions in detail.

contract Score {

 uint score = 5;

 function getScore() returns (uint) {

 return score;

 }

 function setScore(uint new_score) {

 score = new_score;

 }

}

1.1) Getter function using return

Definiton : In Solidity, a getter is a function that returns a value.

To return a value from a function (here our score), you use the following
keywords:

In the function definition: returns + variable type returned between
parentheses for example (uint)
In the function body: return followed by what you want to return for example
return score; or return 137;

1.2) Setter function: pass parameters to our function

Definition : In Solidity, a setter is a function that modifies the value of a variable
(modifies the state of the contract). To creates a setter, you must specify the
parameters when you declare your function.

After your function name, specifies between parentheses 1) the variable type
(uint) and 2) the variable name (new_score)

Compiler Error:

Try entering this code in Remix. We are still not there. The compiler should give
you the following error:

Therefore, we need to specify a visibility for our function. We are going to cover
the notion of visibility in the next section.

Syntax Error: No visibility specified. Did you intend to

add "public" ?

2) Function visibility
2.1) Introduction

To make our functions work, we need to specify their visibility in the contract.

Add the keyword public after your function name.

What does the public keyword mean ?

There are four types of visibility for functions in Solidity : public , private ,
external and internal . The table below explains the difference.

Visibility Contract
itself

Derived
Contracts

External
Contracts

External
Addresses

public ✔︎ ✔︎ ✔︎ ✔︎

private ✔︎

Internal ✔︎ ✔︎

external ✔︎ ✔︎

Learn More:

Those keywords are also available for state variables, except for external .
For simplicity, you could add the public keyword to the variable. This
would automatically create a getter for the variable. You would not need to
create a getter function manually. (see code below)

contract Score {

 uint score = 5;

 function getScore() public returns (uint) {

 return score;

 }

 function setScore(uint new_score) public {

 score = new_score;

 }

}

uint score public;

Try entering that in Remix. We are still not getting there ! You should receive the
following Warning on Remix.

Compiler Warning:

2.2) View vs Pure ?

view functions can only read from the contract storage. They can’t modify
the contract storage. Usually, you will use view for getters.
pure functions can neither read nor modify the contract storage. They are
only used for computation (like mathematical operations).

Because our function getScore() only reads from the contract state, it is a view
function.

3) Adding Security with Modifiers
Our contract has a security issue: Anyone can modify the score.

Solidity provides a global variable msg , that refers to the address that interacts
with the contract’s functions. The msg variables offers two associated fields:

msg.sender : returns the address of the caller of the function.
msg.value : returns the value in Wei of the amount of Ether sent to the
function.

How to restrict a function to a specific caller ?

We should have a feature that enables only certain addresses to change the score
(your address). To achieve this, we will introduce the notion of modifiers.

Definition : A modifier is a special function that enables us to change the
behaviour of functions in Solidity. It is mostly used to automatically check a

Warning: Function state mutability can be restricted to

view.

function getScore() public view returns (uint) {

 return score;

}

condition before executing a function.

We will use the following modifier to restrict the function to only the contract
owner.

The modifier works with the following flow:

1. Check that the address of the caller (msg.sender) is equal to owner address.

2. If 1) is true, it passes the check. The _; will be replaced by the function body
where the modifier is attached.

A modifier can receive arguments like functions. Here is an example of a modifier
that requires the caller to send a specific amount of Ether.

However, we still haven’t defined who the owner is. We will define that in the
constructor.

address owner;

modifier onlyOwner {

 if (msg.sender == owner) {

 _;

 }

}

function setScore(uint new_score) public onlyOwner {

 score = new_score;

}

modifier Fee(uint fee) {

 if (msg.value == fee) {

 _;

 }

}

4) Constructor
Definition : A constructor is a function that is executed only once when the
contract is deployed on the Ethereum blockchain.

In the code below, we define the contract owner:

Learn More:
Constructors are optional. If there is no constructor, the contract will assume
the default constructor, which is equivalent to constructor () {}

Warning !
Prior to version 0.4.22, constructors were defined as function with the same
name as the contract. This syntax was deprecated and is not allowed in version
0.5.0.

5) Events
Events are only used in Web3 to output some return values. They are a way to
show the changes made into a contract.

Events act like a log statement. You declare Events in Soldity as follow:

contract Score {

 address owner;

 constructor() {

 owner = msg.sender;

 }

}

// Outside a function

event myEvent(type1, type2, ...);

To illustrate, we are going to create an event to display the new score set. This
event will be passed within our setScore() function. Remember that you should
pass the score after you have set the new variable.

You can also use the keyword indexed in front of the parameter’s types in the
event definition.

It will create an index that will enable to search for events via Web3 in your front-
end.

Note !

event can be used with any functions types (public , private , internal or
external). However, they are only visible outside the contract.
So a function
cannot read the event emitted by another function for instance.

// Inside a function

emit myEvent(param1, param2, ...);

event Score_set(uint);

function setScore(uint new_score) public onlyOwner {

 score = new_score;

 emit Score_set(new_score);

}

event Score_set(uint indexed);

6) References Data Types: Mappings
Mappings are another important complex data type used in Solidity. They are
useful for association, such as associating an address with a balance or a
score. You define a mapping in Solidity as follow:

You can find below a summary of all the datatypes supported for the key and
the value in a mapping.

Type Key Value

int/uint ✔︎ ✔︎

string ✔︎ ✔︎

bytes ✔︎ ✔︎

address ✔︎ ✔︎

struct ❌ ✔︎

mapping ❌ ✔︎

enums ❌ ✔︎

contract ❌ ✔︎

fixed-sized array ✔︎ ✔︎

dynamic-size array ❌ ✔︎

variable ❌ ❌

You can access the value associated with a key in a mapping by specifing the
key name inside square brackets [] as follows: mapping_name[key] .

Our smart contract will store a mapping of all the user’s addresses and their
associated score. The function getUserScore(address _user) enables to
retrieve the score associated to a specific user’s address.

mapping(KeyType => ValueType) mapping_name;

mapping(address => uint) score_list;

function getUserScore(address user) public view returns (uint) {

 return score_list[user];

}

Tips:

you can use the keyword public in front of a mapping name to create
automatically a getter function in Solidity, as follows:

Learn More:

In Solidity, mappings do not have a length, and there is no concept of a
value associated with a key.

Mappings are virtually initialized in Solidity, such that every possible key
exists and is mapped to a value which is the default value for that datatype.

mapping(address => uint) public score_list;

7) Reference Data Types: Arrays
Arrays are also an important part of Solidity. You have two types of arrays
(T represents the data type and k the maximum number of elements):

Fixed size array : T[k]
Dynamic size array : T[]

In Solidity, arrays are ordered numerically. Array indices are zero based. So
the index of the 1st element will be 0. You access an element in an array in
the same way than you do for a mapping:

You can also used the following two methods to work with arrays:

array_name.length : returns the number of elements the array holds.

array_name.push(new_element) : adds a new element at the end of the
array.

uint[] all_possible_number;

uint[9] one_digit_number;

uint my_score = score_list[owner];

8) Structs
We can build our own datatypes by combining simpler datatypes together
into more complex types using structs.

We use the keyword struct, followed by the structure name , then the fields
that make up the structure.

For example:

Here we have created a datatype called Funder, that is composed of an
address and a uint.

We can now declare a variable of that type

and reference the elements using dot notation

The size of the structure has to be finite, this imposes restrictions on the
elements that can be included in the struct.

Example of a contract using reference datatypes

struct Funder {

 address addr;

 uint amount;

}

Funder giver;

giver.addr = address
(0xBA7283457B0A138890F21DE2ebCF1AfB9186A2EF);

giver.amount = 2500;

pragma solidity ^0.8.0;

contract ListExample {

 struct DataStruct {

 address userAddress;

 uint userID;

 }

 DataStruct[] public records;

 function createRecord1(address _userAddress, uint _userID)
public {

 DataStruct memory newRecord;

 newRecord.userAddress = _userAddress;

 newRecord.userID = _userID;

 }

 function createRecord2(address _userAddress, uint _userID)
public {

records.push(DataStruct({userAddress:_userAddress,userID:_userID
}));

 }

 function getRecordCount() public view returns(uint
recordCount) {

 return records.length;

 }

}

Inheritence in Solidity

In object-oriented programming, inheritance is the mechanism of basing an
object or class upon another object or class.

An object created through inheritance, a "child object", acquires some or all
of the properties and behaviors of the "parent object"

In Solidity we use the is keyword to show that the current contract is
inheriting from a parent contract, for example here Destructible is the child
contract and Owned is the parent contract.

See Solidity Documentation

// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.7.0 <0.9.0;

contract Owned {

 constructor() { owner = msg.sender; }

 address owner;

}

// Use `is` to derive from another contract. Derived

// contracts can access all non-private members including

// internal functions and state variables. These cannot be

// accessed externally via `this`, though.

contract Child1 is Owned {

 // The keyword `virtual` means that the function can change

 // its behaviour in derived classes ("overriding").

 function doThings()) virtual public {

 ;

 }

}

https://docs.soliditylang.org/en/v0.8.10/contracts.html?highlight=inheritence#inheritance

Contract Components
Constructors

Every contract can be deployed with a constructor . It's optional to use and
can be useful for initialising the contract's state i.e deploying an ERC20
contract with X tokens available.

The constructor is executed only when the contract is deployed.

Internal functions

Internal functions cannot be called externally. They are only visible in their
own contract and its child contracts.

Further datatypes
Boolean

bool : The possible values are constants true and false .

Byte Arrays

Can be fixed size or dynamic

For fixed size : bytes1, bytes2, bytes3, …, bytes32 are available

For dynamic arrays use : bytes

bytes.concat function

A recent change (0.8.4)

You can concatenate a variable number of bytes or bytes1 ... bytes32 using
bytes.concat. The function returns a single bytes memory array

string

Dynamically-sized UTF-8-encoded string

string is equal to bytes but does not allow length or index access.

String comparison AND Concatination

You can compare two strings by their keccak256 hash
using keccak256(abi.encodePacked(s1)) == keccak256(abi.encodePacked(
s2))

and concatenate two strings using

string.concat(s1, s2) .

Enums

See documentation

The keyword enum can be used to create a user defined enumerations,
similar to other languages.

For example

 enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
 // we can then create variables

 ActionChoices choice;

 ActionChoices constant defaultChoice =

ActionChoices.GoStraight;

https://docs.soliditylang.org/en/v0.8.10/types.html?highlight=string%20literal#enums

Storage, memory and calldata

See documentation

Storage

Storage data is permanent, forms part of the smart contract's state and can
be accessed across all functions. Storage data location is expensive and
should be used only if necessary. The storage keyword is used to define a
variable that can be found in storage location.

Memory

Memory data is stored in a temporary location and is only accessible within
a function. Memory data is normally used to store data temporarily whilst
executing logic within a function. When the execution is completed, the data
is discarded. The memory keyword is used to define a variable that is stored
in memory location.

Calldata

Calldata is the location where external values from outside a function into a
function are stored. It is a non-modifiable and non-persistent data location.
The calldata keyword is required to define a variable stored in the calldata
location.

https://docs.soliditylang.org/en/v0.8.7/types.html?highlight=calldata#data-location

The difference between calldata and memory is subtle, calldata variables
cannot be changed.

For example :

pragma solidity ^0.8.0;

contract Test {

function memoryTest(string memory _exampleString)

public pure

returns (string memory) {

 _exampleString = "example"; // You can modify memory

 string memory newString = _exampleString;

 // You can use memory within a function's logic

 return newString; // You can return memory

}

function calldataTest(string calldata _exampleString) external

pure returns (string calldata) {

 // cannot modify _exampleString

 // but can return it

 return _exampleString;

}

}

Constant and Immutable variables

State variables can be declared as constant or immutable. In both cases,
the variables cannot be modified after the contract has been constructed.
For constant variables, the value has to be fixed at compile-time, while for
immutable, it can still be assigned at construction time.

It is also possible to define constant variables at the file level.

// define a constant a file level

uint256 constant X = 32**22 + 8;

contract C {

 string constant TEXT = "abc";

 bytes32 constant MY_HASH = keccak256("abc");

 uint256 immutable decimals;

 uint256 immutable maxBalance;

 address immutable owner = msg.sender;

 constructor(uint256 _decimals, address _reference) {

 decimals = _decimals;

 // Assignments to immutables can even access the

environment.

 maxBalance = _reference.balance;

 }

Interfaces
Interfaces in Solidity work the same way as in other languages.

The interface specifies the function signatures, but the implementation is
specified in child contracts.

Use the interface keyword to declare an interface

For example

Fallback and Receive functions
receive() external payable { ... }

Called when the contract receives ether

fallback () external [payable]

Called if a function cannot be found matching the required function
signature.

It also handles the case when ether is received but there is no receive
function

Checking inputs and dealing with errors
require / assert / revert / try catch

See Error handling

"The require function either creates an error without any data or an error of
type Error(string).

It should be used to ensure valid conditions that cannot be detected until
execution time. This includes conditions on inputs or return values from calls
to external contracts."

Example

The assert function creates an error of type Panic(uint256).

Assert should only be used to test for internal errors, and to check
invariants.

Properly functioning code should never create a Panic, not even on invalid

interface DataFeed {

function getData(address token) external returns (uint value);

}

require(_amount > 0,"Amount must be > 0");

https://docs.soliditylang.org/en/v0.8.7/control-structures.html?highlight=require#error-handling-assert-require-revert-and-exceptions

external input.

Example

The revert statement acts like a throw statement in other languages and
causes the EVM to revert.

The require statement is ofen used in its place.

It can take a string as an error message, or a Error object.

For example

try / catch statements can be used to catch errors in calls to external
contracts.

assert(a>b);

// SPDX-License-Identifier: GPL-3.0

pragma solidity ^0.8.4;

contract VendingMachine {

 address owner;

 error Unauthorized();

 function buy(uint amount) public payable {

 if (amount > msg.value / 2 ether)

 revert("Not enough Ether provided.");

 // Alternative way to do it:

 require(

 amount <= msg.value / 2 ether,

 "Not enough Ether provided."

);

 // Perform the purchase.

 }

 function withdraw() public {

 if (msg.sender != owner)

 revert Unauthorized();

 payable(msg.sender).transfer(address(this).balance);

 }

}

// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.8.1;

interface DataFeed {

function getData(address token) external returns (uint value);

}

contract FeedConsumer {

 DataFeed feed;

 uint errorCount;

 function rate(address token) public

 returns (uint value, bool success) {

 // Permanently disable the mechanism if there are

 // more than 10 errors.

 require(errorCount < 10);

 try feed.getData(token) returns (uint v) {

 return (v, true);

 } catch Error(string memory /*reason*/) {

 // This is executed in case

 // revert was called inside getData

 // and a reason string was provided.

 errorCount++;

 return (0, false);

 } catch Panic(uint /*errorCode*/) {

 // This is executed in case of a panic,

 // i.e. a serious error like division by zero

 // or overflow. The error code can be used

 // to determine the kind of error.

 errorCount++;

 return (0, false);

 } catch (bytes memory /*lowLevelData*/) {

 // This is executed in case revert() was used.

 errorCount++;

 return (0, false);

 }

 }

}

Custom Errors
See ReadTheDocs and Errors and the revert statement

A recent addition to the language is the error type allowing custom errors.
These are more gas efficient and readable.

We can define a error with the error keyword, either in a contract or at file
level, and then use it as part of the revert statement as follows.

Errors cannot be overloaded or overridden but are inherited.

Instances of errors can only be created using revert statements.

// SPDX-License-Identifier: GPL-3.0

pragma solidity ^0.8.4;

/// Not enough funds for transfer. Requested `requested`,

/// but only `available` available.

error NotEnoughFunds(uint requested, uint available);

contract Token {

 mapping(address => uint) balances;

 function transfer(address to, uint amount) public {

 uint balance = balances[msg.sender];

 if (balance < amount)

 revert NotEnoughFunds(amount, balance);

 balances[msg.sender] -= amount;

 balances[to] += amount;

 // ...

 }

}

https://docs.soliditylang.org/en/v0.8.15/structure-of-a-contract.html?errors#errors
https://docs.soliditylang.org/en/v0.8.15/structure-of-a-contract.html?errors#errors

Using Other Contracts and Libraries
When thinking about interacting with other contracts / libraries, it is useful
to distinguish of what happens at compile time, and what happens at
runtime.

Compile time

If your contract references another contract or library, whether for
inheritance, or for an external function call, the compiler needs to have the
relevant code available to it.

You use the import statement to make the code available in your
compilation file, alternatively you could copy the code into your compilation
file it has the same effect.

Sometimes you need to gather all the contracts into one file, for example
when getting you contract verified on etherscan. This process is known as
flattening and there are plugins in Remix and Truffle to help with this.

If you inherit another contract, for example the Open Zeppelin Ownable
contract, on compilation, the functions and variables from the parent
contract (except those marked as private) are merged into your contract
and become part of the resulting bytecode. From that point on the origin of
the functions, are irrelevant.

Run time

There are 2 ways that your contract can interact with other deployed
bytecode at run time.

1. External calls

Your contract can make calls to other contract's functions during a
transaction, to do so it needs to have the function signature available
(this is checked at compile time) and the other contract's address
available.

pragma solidity ^0.8.0;

contract InfoFeed {

 uint256 price;

 function info() public view returns (uint256 ret_) {

 return price;

 }

 // other functions

}

contract Consumer {

 InfoFeed feed;

 constructor(InfoFeed _feed){

 feed = _feed;

 }

 function callFeed() public view returns (uint256) {

 return feed.info();

 }

}

2. Using libraries

A library is a type of smart contract that has no state, instead their
functions run in the context of your contract.

See Documentation

For example we could use the Math library from Open Zeppelin

https://github.com/OpenZeppelin/openzeppelin-
contracts/contracts/utils/math/Math.sol

We import it so that the compiler has access to the code

The keyword using associates a datatype with our library, we can then use a
variable of that datatype with the dot notation to call a library function

Deployed Libraries

You can reference already deployed libraries, at deploy time a linking
process takes place which gives your contract the address of the library.

The the library has external or public functions these need to be linked to
your contract at deploy time.

If the library functions are internal, they will be inlined into your contract at
compile time.

pragma solidity ^0.8.0;

import "https://github.com/OpenZeppelin/openzeppelin-contracts

/contracts/utils/math/Math.sol";

contract Test {

 using Math for uint256;

 function bigger(uint256 _a, uint256 _b) public pure

returns(uint256){

 uint256 big = _a.max(_b);

 return(big);

 }

}

uint256 big = _a.max(_b);

https://docs.soliditylang.org/en/latest/contracts.html#libraries
https://github.com/OpenZeppelin/openzeppelin-contracts/contracts/utils/math/Math.sol

Pre-compiled contracts

The EVM is not very efficient...

List Of Precompiled Contracts

Data Copy (Identity)

var PrecompiledContractsHomestead =
map[common.Address]PrecompiledContract{

common.BytesToAddress([]byte{1}): &ecrecover{},

common.BytesToAddress([]byte{2}): &sha256hash{},

common.BytesToAddress([]byte{3}): &ripemd160hash{},

common.BytesToAddress([]byte{4}): &dataCopy{},

}

var PrecompiledContractsByzantium =
map[common.Address]PrecompiledContract{

common.BytesToAddress([]byte{1}): &ecrecover{}

common.BytesToAddress([]byte{2}): &sha256hash{},

common.BytesToAddress([]byte{3}): &ripemd160hash{},

common.BytesToAddress([]byte{4}): &dataCopy{},

common.BytesToAddress([]byte{5}): &bigModExp{},

common.BytesToAddress([]byte{6}): &bn256Add{},

common.BytesToAddress([]byte{7}): &bn256ScalarMul{},

common.BytesToAddress([]byte{8}): &bn256Pairing{},

}

function dataCopy(bytes memory _input) internal view returns
(bytes memory) {

 uint length = _input.length;

 bytes memory result = new bytes(length);

 assembly {

 // Call precompiled contract to copy data

 if iszero(staticcall(gas, 0x04, add(_input, 0x20),

length, add(result, 0x20), length)) {

 revert(0, 0)

 }

 }

 return result;

}

SHA256

Deleting Storage

Fee Schedule
After the London upgrade every block has a base fee, the minimum price
per unit of gas for inclusion in this block, calculated by the network based
on demand for block space.

As the base fee of the transaction fee is burnt, users are also expected to
set a tip (priority fee) in their transactions.

You can set a max fee (maxFeePerGas) for the transaction.

The difference between the max fee and the actual fee is refunded

refund = max fee - (base fee + priority fee) .

Cost of OpCodes

// SHA256 implemented as a native contract.

type sha256hash struct{}

// RequiredGas returns the gas required to execute the pre-
compiled contract.

// This method does not require any overflow checking as the
input size gas costs

// required for anything significant is so high it's impossible
to pay for.

func (c *sha256hash) RequiredGas(input []byte) uint64 {

return uint64(len(input)+31)/32*params.Sha256PerWordGas +
params.Sha256BaseGas

}

func (c *sha256hash) Run(input []byte) ([]byte, error) {

h := sha256.Sum256(input)

return h[:], nil

}

See Appendix G of the yellow paper

Deleting data from a contract
1. Simple types.

You can use

delete myVariable; or myVariable = 0;

2. Arrays

You can use delete myArray; , this will either set the length to zero for
a dynamic array, or set each item to zero for a static array.

3. Structs

You can delete an instance with delete myStructInstance; , unless the
struct contains a mapping

4. Mappings within structs

You need to delete the individual key value pairs.

delete (myMapping[key]);

"LatestCourse/img/Screenshot 2022-07-26 at 09.37.08.png" is not created yet. Click
to create.

Recent (since 0.8.6) Language Changes
The latest documentation is here

The latest version is 0.8.18

Event Selector
E.selector for a non-anonymous event E to access the 32-byte selector
topic.

Assembly Memory Safe

Allow annotating inline assembly as memory-safe to allow optimisations and
stack limit evasion that rely on respecting Solidity's memory model.

File level library references

using M for Type; is allowed at file level and M can now also be a brace-
enclosed list of free functions or library functions.

using ... for T global; is allowed at file level where the user-defined
type T has been defined, resulting in the effect of the statement being
available everywhere T is available.

Extend Comparison Operators

Add equality-comparison operators for external function types

abi.encodeCall

Support ContractName.functionName for abi.encodeCall , in addition to
external function pointers.

abi.encodeCall(functionPointer, (arg1, arg2, ...))

type-checks the arguments and returns the ABI-encoded function call data.

External Function fields

Supports .address and .selector on external function pointers to access
their address and function selector.

Inheritance

https://docs.soliditylang.org/en/latest/

A function that overrides only a single interface function does not require
the override specifier.

Enum min / max

Support type(E).min and type(E).max for enums.

User Defined Value Type

Allows creating a zero cost abstraction over a value type with stricter type
requirements.

London upgrade fee support

Introduce global block.basefee for retrieving the base fee of the current
block.

Version 0.8.18 Features

See Blog

Support for Paris hard fork

Deprecation of global block.difficulty built-in in Solidity and removal
of difficulty()
Introduction of global block.prevrandao built-in in Solidity
and prevrandao() instruction in inline assembly for EVM versions >=
Paris.

block.difficulty is planned to be removed entirely in Solidity
version 0.9.0

Deprecation of selfdestruct

selfdestruct is now considered deprecated (EIP-6049) and the compiler
will warn about its use, both in Solidity and in Yul, including inline assembly.

There is currently no replacement, but its use is highly discouraged because
it will eventually change its semantics and all contracts using it will be
affected in some way.

Named Parameters in mappings

https://blog.soliditylang.org/2023/02/01/solidity-0.8.18-release-announcement/
https://eips.ethereum.org/EIPS/eip-6049

References
Solidity Documentation

Libraries

https://docs.soliditylang.org/en/v0.8.10/
https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9

Function Selectors
How does the EVM call the correct function in a contract ?

The first four bytes of the call data for a function call specifies the function to be
called.

The compiler creates something like

Encoding the function signatures and parameters

Example

method_id = first 4 bytes of msg.data

if method_id == 0x25d8dcf2 jump to 0x11

if method_id == 0xaabbccdd jump to 0x22

if method_id == 0xffaaccee jump to 0x33

other code

0x11:

code for function with method id 0x25d8dcf2

0x22:

code for another function

0x33:

code for another function

pragma solidity ^0.8.0;

contract MyContract {

 Foo otherContract;

 function callOtherContract() public view returns (bool){

 bool answer = otherContract.baz(69,true);

 return answer;

 }

}

contract Foo {
 function bar(bytes3[2] memory) public pure {}
 function baz(uint32 x, bool y) public pure returns (bool r) {

https://docs.soliditylang.org/en/v0.6.2/abi-spec.html?highlight=selector#examples

The way the call is actually made involves encoding the function selector and
parameters

If we wanted to call baz with the parameters 69 and true , we would pass 68 bytes
total, which can be broken down into:

1. the Method ID. This is derived as the first 4 bytes of

the Keccak hash of the ASCII form of the signature baz(uint32,bool).

2. the first parameter, a uint32 value 69 padded to 32 bytes

0x00
00000045

3. the second parameter - boolean true, padded to 32 bytes

0x00
00000001

In total

0xcdcd77c00

000000000000000000000450000000000000000000000000000

000000000000000000000000000000000001

This is what you see in block explorers if you look at the inputs to functions

There are helper methods to put this together for you

Alternatively you can then call functions in external contracts on a low level way via

 r = x > 32 || y;
 }

 function sam(bytes memory, bool, uint[] memory) public pure {}

}

0xcdcd77c0:

abi.encodeWithSignature("baz(uint32, boolean)", 69, true);

bytes memory payload =

abi.encodeWithSignature("baz(uint32, boolean)", 69, true);

(bool success, bytes memory returnData) =

address(contractAddress).call(payload);

require(success);

Further Solidity Types
User Defined Types

See Docs

A user defined value type is defined using type C is V , where C is the name of the
newly introduced type and V has to be a built-in value type (the “underlying type”).

The function C.wrap is used to convert from the underlying type to the custom type.
Similarly, the function C.unwrap is used to convert from the custom type to the
underlying type.

Example from the docs

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.8;

// Represent a 18 decimal, 256 bit wide fixed point type using a user
defined value type.

type UFixed256x18 is uint256;

/// A minimal library to do fixed point operations on UFixed256x18.

library FixedMath {

uint constant multiplier = 10**18;

/// Adds two UFixed256x18 numbers. Reverts on overflow, relying on
checked
/// arithmetic on uint256.

function add(UFixed256x18 a, UFixed256x18 b) internal pure returns
(UFixed256x18) {

return UFixed256x18.wrap(UFixed256x18.unwrap(a) +
UFixed256x18.unwrap(b));

}

/// Multiplies UFixed256x18 and uint256. Reverts on overflow, relying on
checked
/// arithmetic on uint256.

function mul(UFixed256x18 a, uint256 b) internal pure returns
(UFixed256x18) {

return UFixed256x18.wrap(UFixed256x18.unwrap(a) * b);

}

/// Take the floor of a UFixed256x18 number.

/// @return the largest integer that does not exceed `a`.

function floor(UFixed256x18 a) internal pure returns (uint256) {

https://docs.soliditylang.org/en/latest/types.html#user-defined-value-types

Notice how

UFixed256x18.wrap and FixedMath.toUFixed256x18

have the same signature but perform two very different operations: The
UFixed256x18.wrap function returns a UFixed256x18 that has the same data
representation as the input, whereas toUFixed256x18 returns a UFixed256x18 that
has the same numerical value.

Function Types

See Docs

return UFixed256x18.unwrap(a) / multiplier;

}

/// Turns a uint256 into a UFixed256x18 of the same value.

/// Reverts if the integer is too large.

function toUFixed256x18(uint256 a) internal pure returns (UFixed256x18) {

return UFixed256x18.wrap(a * multiplier);

}

}

contract Oracle {

 struct Request {

 bytes data;

 function(uint) external callback;

 }

 Request[] private requests;

 event NewRequest(uint);

 function query(bytes memory data, function(uint) external callback)
public {

 requests.push(Request(data, callback));

 emit NewRequest(requests.length - 1);

 }

 function reply(uint requestID, uint response) public {

 // Here goes the check that the reply comes from a trusted source

 requests[requestID].callback(response);

 }

}

https://docs.soliditylang.org/en/latest/types.html#function-types

